160 research outputs found

    Evolution of a physical and biological front from upwelling to relaxation

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Continental Shelf Research 108 (2015): 55-64, doi:10.1016/j.csr.2015.08.005.Fronts influence the structure and function of coastal marine ecosystems. Due to the complexity and dynamic nature of coastal environments and the small scales of frontal gradient zones, frontal research is difficult. To advance this challenging research we developed a method enabling an autonomous underwater vehicle (AUV) to detect and track fronts, thereby providing high-resolution observations in the moving reference frame of the front itself. This novel method was applied to studying the evolution of a frontal zone in the coastal upwelling environment of Monterey Bay, California, through a period of variability in upwelling intensity. Through 23 frontal crossings in four days, the AUV detected the front using real-time analysis of vertical thermal stratification to identify water types and the front between them, and the vehicle tracked the front as it moved more than 10 km offshore. The physical front coincided with a biological front between strongly stratified phytoplankton-enriched water inshore of the front, and weakly stratified phytoplankton-poor water offshore of the front. While stratification remained a consistent identifier, conditions on both sides of the front changed rapidly as regional circulation responded to relaxation of upwelling winds. The offshore water type transitioned from relatively cold and saline upwelled water to relatively warm and fresh coastal transition zone water. The inshore water type exhibited an order of magnitude increase in chlorophyll concentrations and an associated increase in oxygen and decrease in nitrate. It also warmed and freshened near the front, consistent with the cross-frontal exchange that was detected in the high-resolution AUV data. AUV-observed cross-frontal exchanges beneath the surface manifestation of the front emphasize the importance of AUV synoptic water column surveys in the frontal zone.This work was supported by the David and Lucile Packard Foundation

    Autonomous four-dimensional mapping and tracking of a coastal upwelling front by an autonomous underwater vehicle

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Field Robotics 33 (2016): 67-81, doi:10.1002/rob.21617Coastal upwelling is a wind-driven ocean process that brings cooler, saltier, and nutrient-rich deep water upward to the surface. The boundary between the upwelling water and the normally stratified water is called the “upwelling front.” Upwelling fronts support enriched phytoplankton and zooplankton populations, thus they have great influences on ocean ecosystems. Traditional ship-based methods for detecting and sampling ocean fronts are often laborious and very difficult, and long-term tracking of such dynamic features is practically impossible. In our prior work, we developed a method of using an autonomous underwater vehicle (AUV) to autonomously detect an upwelling front and track the front's movement on a fixed latitude, and we applied the method in scientific experiments. In this paper, we present an extension of the method. Each time the AUV crosses and detects the front, the vehicle makes a turn at an oblique angle to recross the front, thus zigzagging through the front to map the frontal zone. The AUV's zigzag tracks alternate in northward and southward sweeps, so as to track the front as it moves over time. This way, the AUV maps and tracks the front in four dimensions—vertical, cross-front, along-front, and time. From May 29 to June 4, 2013, the Tethys long-range AUV ran the algorithm to map and track an upwelling front in Monterey Bay, CA, over five and one-half days. The tracking revealed spatial and temporal variabilities of the upwelling front.This work was supported by the David and Lucile Packard Foundation

    Detection of unanticipated faults for autonomous underwater vehicles using online topic models

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Field Robotics 35 (2018): 705-716, doi:10.1002/rob.21771.For robots to succeed in complex missions, they must be reliable in the face of subsystem failures and environmental challenges. In this paper, we focus on autonomous underwater vehicle (AUV) autonomy as it pertains to self‐perception and health monitoring, and we argue that automatic classification of state‐sensor data represents an important enabling capability. We apply an online Bayesian nonparametric topic modeling technique to AUV sensor data in order to automatically characterize its performance patterns, then demonstrate how in combination with operator‐supplied semantic labels these patterns can be used for fault detection and diagnosis by means of a nearest‐neighbor classifier. The method is evaluated using data collected by the Monterey Bay Aquarium Research Institute's Tethys long‐range AUV in three separate field deployments. Our results show that the proposed method is able to accurately identify and characterize patterns that correspond to various states of the AUV, and classify faults at a high rate of correct detection with a very low false detection rate.Office of Naval Research Grant Number: N00014‐14‐1‐0199; David and Lucile Packard Foundatio

    Education for sustainable development: Guidance for UK higher education providers

    Get PDF
    This guidance has been prepared by representatives of the higher education community with expertise in education and sustainable development. It has been produced via collaboration between the Quality Assurance Agency for Higher Education (QAA) and the Higher Education Academy (HEA). The guidance is intended to be of practical help to higher education providers working with students to foster their knowledge, understanding and skills in the area of sustainable development. The guidance recognises that there are many ways in which this may be achieved and is not prescriptive about delivery. Instead it offers an outcomes-based framework for use in curriculum design, and general guidance on approaches to teaching, learning and assessment. The guidance is intended to be relevant to educators in all disciplines wishing to embed or include learning about sustainable development within their curricula. This guidance is intended to complement Chapter B3 of the UK Quality Code for Higher Education (Quality Code) dedicated to learning and teaching, but it does not form an explicit part of it. The Quality Code sets out the expectations that all providers of UK higher education are required to meet and is used in QAA review processes. The guidance is intended to apply to all parts of the UK

    Targeted sampling by autonomous underwater vehicles

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Ryan, J. P., Kieft, B., Hobson, B. W., McEwen, R. S., Godin, M. A., Harvey, J. B., Barone, B., Bellingham, J. G., Birch, J. M., Scholin, C. A., & Chavez, F. P. Targeted sampling by autonomous underwater vehicles. Frontiers in Marine Science, 6 (2019): 415, doi:10.3389/fmars.2019.00415.In the vast ocean, many ecologically important phenomena are temporally episodic, localized in space, and move according to local currents. To effectively study these complex and evolving phenomena, methods that enable autonomous platforms to detect and respond to targeted phenomena are required. Such capabilities allow for directed sensing and water sample acquisition in the most relevant and informative locations, as compared against static grid surveys. To meet this need, we have designed algorithms for autonomous underwater vehicles that detect oceanic features in real time and direct vehicle and sampling behaviors as dictated by research objectives. These methods have successfully been applied in a series of field programs to study a range of phenomena such as harmful algal blooms, coastal upwelling fronts, and microbial processes in open-ocean eddies. In this review we highlight these applications and discuss future directions.This work was supported by the David and Lucile Packard Foundation. The 2015 experiment in Monterey Bay was partially supported by NOAA Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) Grant NA11NOS4780030. The 2018 SCOPE Hawaiian Eddy Experiment was partially supported by the National Science Foundation (OCE-0962032 and OCE-1337601), Simons Foundation Grant #329108, the Gordon and Betty Moore Foundation (Grant #3777, #3794, and #2728), and the Schmidt Ocean Institute for R/V Falkor Cruise FK180310. Publication of this paper was funded by the Schmidt Ocean Institute

    Evolution of Melanopsin Photoreceptors: Discovery and Characterization of a New Melanopsin in Nonmammalian Vertebrates

    Get PDF
    In mammals, the melanopsin gene (Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term Opn4x. RT-PCR analysis in chicken, zebrafish, and Xenopus identifies expression of both Opn4m and Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye, Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express Opn4x. Importantly, we show that a representative of the new melanopsins (chicken Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both Opn4m and Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x

    Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1

    Get PDF
    Prion diseases are associated with the conformational conversion of the host-encoded cellular prion protein into an abnormal pathogenic isoform. Reduction in prion protein levels has potential as a therapeutic approach in treating these diseases. Key targets for this goal are factors that affect the regulation of the prion protein gene. Recent in vivo and in vitro studies have suggested a role for prion protein in copper homeostasis. Copper can also induce prion gene expression in rat neurons. However, the mechanism involved in this regulation remains to be determined. We hypothesized that transcription factors SP1 and metal transcription factor-1 (MTF-1) may be involved in copper-mediated regulation of human prion gene. To test the hypothesis, we utilized human fibroblasts that are deleted or overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. Menkes deletion fibroblasts have high intracellular copper, whereas Menkes overexpressed fibroblasts have severely depleted intracellular copper. We have utilized this system previously to demonstrate copper-dependent regulation of the Alzheimer amyloid precursor protein. Here we demonstrate that copper depletion in MNK overexpressed fibro-blasts decreases cellular prion protein and PRNP gene levels. Conversely, expression of transcription factors SP1 and/or MTF-1 significantly increases prion protein levels and up-regulates prion gene expression in copper-replete MNK deletion cells. Furthermore, siRNA "knockdown" of SP1 or MTF-1 in MNK deletion cells decreases prion protein levels and down-regulates prion gene expression. These data support a novel mechanism whereby SP1 and MTF-1 act as copper-sensing transcriptional activators to regulate human prion gene expression and further support a role for the prion protein to function in copper homeostasis. Expression of the prion protein is a vital component for the propagation ofprion diseases; thus SP1 and MTF-1 represent new targets in the devel-opment of key therapeutics toward modulating the expression of the cellular prion protein and ultimately the prevention of prion disease

    Abundance, distribution and population trends of Nile crocodile (Crocodylus niloticus) in Gonarezhou National Park, Zimbabwe

    Get PDF
    The Nile crocodile (Crocodylus niloticus) is an iconic or keystone species in many aquatic ecosystems. In order to understand the abundance, distribution, and population trends of Nile crocodiles in Gonarezhou National Park (GNP), southeastern Zimbabwe, we carried out 4 annual aerial surveys, using a Super Cub aircraft, along 3 major rivers, namely, Save, Runde and Mwenezi, between 2008 and 2011. Our results show that Runde River was characterised by a significant increase in Nile crocodile abundance whereas both Save and Mwenezi rivers were characterised by non-significant increases in Nile crocodile abundance. Overall, we recorded a significant increase in total Nile crocodile population in the three major rivers of the GNP. The non-significant increase in Nile crocodiles in the Mwenezi and Save rivers was likely due to habitat loss, through siltation of large pools, and conflicts with humans, among other factors. We suggest that GNP management should consider halting crocodile egg collection in rivers with low crocodile populations and continuously monitor the crocodile population in the par

    The integrity and organization of the human AIPL1 functional domains is critical for its role as a HSP90-dependent co-chaperone for rod PDE6

    Get PDF
    Biallelic mutations in the photoreceptor-expressed aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) are associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy in early childhood. AIPL1 functions as a photoreceptor-specific co-chaperone that interacts with the molecular chaperone HSP90 to facilitate the stable assembly of the retinal cyclic GMP (cGMP) phosphodiesterase (PDE6) holoenzyme. In this study, we characterized the functional deficits of AIPL1 variations, some of which induce aberrant pre-mRNA AIPL1 splicing leading to the production of al- ternative AIPL1 isoforms. We investigated the ability of the AIPL1 variants to mediate an interaction with HSP90 and modulate the rod cGMP PDE6 stability and activity. Our data revealed that both the FK506 binding protein (FKBP)-like domain and the tetra- tricopeptide repeat (TPR) domain of AIPL1 are required for interaction with HSP90. We further demonstrate that AIPL1 signifi- cantly modulates the catalytic activity of heterologously expressed rod PDE6. Although the N-terminal FKBP-like domain of AIPL1 binds the farnesylated PDE6a subunit through direct interaction with the farnesyl moiety, mutations compromising the integrity of the C-terminal TPR domain of AIPL1 also failed to modulate PDE6 activity efficiently. These AIPL1 variants moreover failed to promote the HSP90-dependent stabilization of the PDE6a subunit in the cytosol. In summary, we have successfully vali- dated the disease-causing status of the AIPL1 variations in vitro. Our findings provide insight into the mechanism underlying the co-chaperone role of AIPL1 and will be critical for ensuring an early and effective diagnosis of AIPL1 LCA patients

    The Reflex Effects on the Respiratory Regulation of the CO2 at the Different Flow Rate and Concentration

    Get PDF
    Purpose: The purpose of this study was to investigate the activation of the respiratory centers during insufflation of the larynx with CO2 at different flow rates and concentrations. Materials and Methods: The experiments were carried out in spontaneous air breathing rabbits, anesthetized with thiopental sodium (25 mg kg(-1) i.v.). The larynx was separated from the oropharyngeal cavity and the trachea. The tidal volume (V-T) and respiratory frequency (f min(-1)) were recorded from the lower tracheal cannula. The respiratory minute volume (V-E) was calculated, the action potentials from the right phrenic nerve were recorded and the inspiratory (T-I) and expiratory (T-E) periods and the mean inspiratory flow rate (V-T/T-I) were calculated. The larynx was insufflated at flow rates of 500 mL min(-1) and 750 mL min(-1), with 7 and 12% CO2-Air by means of a respiratory pump. Results: Insufflation of the larynx, with both gas mixtures, decreased the f and VT significantly. The T, and TE were found to increase significantly due to the decreasing in f. There was a significant decrease in V-T/T-I ratio. Following bilateral midcervical vagotomy, on the passing of both gas mixtures, significant decreases were observed in the VT, and the responses of f, T, and TE were abolished. After cutting the superior laryngeal nerve, the responses of the VT to both gas mixtures were abolished. Conclusion: In conclusion, the results of this study purpose that the stimulation of the laryngeal mechanoreceptors by the effect of hypercapnia decreases the activation of the respiratory center
    corecore